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MAXIMUM PRINCIPLE ON THE ENTROPY 
AND SECOND-ORDER KINETIC SCHEMES 

BRAHIM KHOBALATTE AND BENOIT PERTHAME 

ABSTRACT. We consider kinetic schemes for the multidimensional inviscid gas 
dynamics equations (compressible Euler equations). We prove that the discrete 
maximum principle holds for the specific entropy. This fixes the choice of the 
equilibrium functions necessary for kinetic schemes. We use this property to 
perform a second-order oscillation-free scheme, where only one slope limitation 
(for three conserved quantities in 1D) is necessary. Numerical results exhibit 
stability and strong convergence of the scheme. 

INTRODUCTION 

We consider the gas dynamics equations in one or two space dimensions, 

atp + div(pu) = 0, 
(1) & atpu ? + div(puju) + a, p = 0, j = 1, 2, 

9,E +div[(E +p)u]= 0, 

where x = (xl, x2), u = (ul, u2), and the total energy E - piu12/2+pT/(y-1) 
is related to the pressure by the relation p = pT, 1 < y < 2 in dimension 2, 
1 < y < 3 in dimension 1. 

It is known that, because of shock waves, an entropy inequality has to be 
added to (1) (see Lax [3] for instance), 

(2) atpS + div(puS) < 0, 

where the specific entropy can be chosen as 

(3) S = p- T11(y-1) 

As was proved by Tadmor [10], the combination of (1) and (2) yields that S' 
satisfies the maximum principle 

(4) S(x, t + h) < max{S(y, t); lY - xi < jjujj,>Oh}, 

and, in 11D, Godunov and Lax-Friedrichs schemes preserve this property at the 
discretized level because they solve exactly the system (1). A reason why (4) 
should hold is that S satisfies the (meaningless) equation 

ats + u * Vxs < 0. 
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The purpose of this paper is to show that the property (4) is also satisfied for 
kinetic schemes in one or two dimensions (we do not consider higher dimensions 
here, but the extension is straightforward). This requires one to choose the 
equilibrium function in an appropriate way, in the class introduced by Perthame 
[6, 7], and to interpret the scheme as a discretization of a transport equation. 
Then, the property (4) follows from a variational principle. It is remarkable 
that the appropriate equilibrium function is not the Maxwellian distribution. 

It is natural to try to extend this property to second-order accurate schemes. 
It then appears that a conservative second-order reconstruction, following the 
method introduced by Van Leer [12], has to increase the specific entropy, and 
we can only impose the maximum principle up to a second-order error. This 
is achieved in reconstructing a second-order approximation Yi+1/2 of (P(xi+112) 
for o = p, u, or S. To do so, we use centered predictions of A/p, and we 
impose both 

(5) 0 < Si+1/2, Si-112 < max(S1, Si+,, Si-,), and Pi+1/2 > 0 

and the conservation of the quantities P = p, pu, E, i.e., 

(6) 2TI = Ti+i12 + Ti-1/2. 

In practice, to realize (6), we have to relax (5) up to second order. 
Numerical tests show that this limitation (5) alone is enough to prevent much 

of the oscillations in the fully second-order scheme, at least for some classical 
tests. This is somewhat surprising since nonoscillatory schemes usually require 
as many limitations as conserved quantities, even though the ENO theory ([2, 
9] and the references therein) shows that some flexibility in the reconstruction 
is possible. 

We would like to point out that the conservative entropy inequality (2) is well 
understood at the discrete level (Osher [5], Tadmor [ 1]) for general hyperbolic 
systems. But the maximum principle for the specific entropy (3) is not a con- 
sequence of (2) alone, and it holds only for the particular case of gas dynamics 
(and related systems); therefore, it requires a specific proof. 

The paper is organized as follows. In the first section, we consider the 1D 
case; the 2D case, for a general mesh (rectangular, triangular, dual type), is 
treated in ?2. Then, the second-order scheme, how the limitation (4) is used, 
and numerical tests are discussed in ?3. 

1. THE 1D CASE 

The general form of a conservative scheme for (1) can be written 

(7) Uin+ - Un + c (Fn -Fn ) = 0 

where Uin = (p7, (pu), Eny)t is the average, on the mesh (xi112, xi+112) with 
uniform size Ax, of the vector (p(x, nAt), pu(x, nAt), E(x, nAt)). The time 
step At is related to a by 

(8) a = At/Ax. 

The class of kinetic schemes which we are going to consider is given by a flux 
splitting 

(9) Fin+112 = F+(Uin) + F-(Uin+), 
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(10) 

F+(U) = I A [1 V_ 2 ) X + (0, 0, T)tC ( 
- 

)] d /VT4, 

and F- is obtained by integrating over v < 0 rather than v > 0. This flux is 
consistent as soon as F-(U) + F+(U) = (pu, pu2 + pT, (E +p)u)t, which is 
achieved when X, C are even, nonnegative functions satisfying (see [7]) 

(1 (1, W2)X(w) dx = (I 1), C (w) dw = A:= (3 -y)l(y -1). 

Several choices of x,; are possible, but to fit with the general theory, they 
should yield an entropy in cell property. This is achieved, for instance, by the 
classical Maxwellians aew2 /2 as in Deshpande [1] for the single macroscopic 
entropy p ln T . Other choices, as in [6], are also possible but always associated 
with one single macroscopic entropy. On the other hand, it is very clear in the 
proof given in [10] that infinitely many entropies are necessary for the maximum 
principle. The only choice of X, C which meets this requirement is 

(12) x(w) = a(1- w2/f6), ;(w) = -5(y-1)/(y-3) (W)](y+1)1(3-y) 

where a, ,B, 3 are chosen to satisfy (1 1), i.e., 

a = [2 j7t/2 Cos21(y-1d) -d 1 

(13) ,B= J / cos2/os OdO j sin2 dcos21(>-OdO, 

C5(Y+1)/(Y-3) - '2i8 -/,I 

Indeed, with this choice we can obtain a family of singular entropy inequali- 
ties. They correspond to the generalized convex functions pHl(U), where fl is 
parametrized by q > 0: 

0 if pY-1/T < 1, 

(14) fl(U) = if pY-11T = , 
t +oo otherwise, 

which are obtained as the limit as p tends to +oo of the convex entropies 
p(pY-l/Tq)P. The corresponding conservative entropy inequality has a flux 
splitting form 

(15) (pj)nl+l <(p11)7 - G+(U ) + gG-(U) + oG+(Uin 1)- G-(Uin+), 

where the entropy fluxes GI depend on , 

(16) G-(U) = Fp (u)riu), 

and where Fp is the mass flux in (7), (9). It has to be noted that G' has 
the sign + and pi - oFp, (Uin) + oF, (Uin) > 0 with the above CFL condition. 
Therefore, the right-hand side of (15) is the sum of three nonnegative terms 
depending, respectively, on Uin, Uin U [Un+j. We use the convention that the 
right-hand side is +oo whenever one of these three terms is +oo. 

We can now state our main result. 
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Theorem 1. With the choice (12), the kinetic scheme (7)-(10) satisfies 
(i) pi2+l >0?) Tin1 >0 whenever pin, Tin > 0, 
(ii) the conservative entropy inequalities (15) for any q > 0, 
(iii) the maximum principle on the specific entropy 

(17) n+ +l(+ll(-)< max(Sn' Sn I 1) 
under the CFL condition (I u I + fl T) n 1 for all i . 

Remarks. (1) For y = 1.4, we find ,6 = 7, and thus our CFL condition is 
stricter then the classical one. But in practice we can use the classical one. 

(2) The theory of kinetic formulation of the isentropic system, developed in 
Lions, Perthame, and Tadmor [4], requires the same X-function in (12), but 
there, the entropies are much simpler than those developed in the proof below. 
The exact relation between the two theories is unclear to the authors. 

Proof of Theorem 1. First step: The kinetic level. We first introduce the dis- 
cretized transport equations 

(1) fi(V) - fn(W) + [V+ fin(W)-v fn+ (W-+n l()+-fn(W)] = ?, 

(19) gL(v)-fgi(v) + [V+g/n(V)-V_gn I(v)-V+gf 1(V) + V_gi(V)] = O, 

where v+ = max(O, v), v+ - v = v, and 

(20) fif(v) = pnX[(v u)/x ], gin(v) = p7V7IT [(v-u7)/x/7]. 

As usual [1, 7], the finite difference scheme (7), (10) is deduced by multiplying 
(18) by the vector (1, v, V2/2)t and adding to it (19) multiplied by (0, 0, I)t 
and integrating against dv . 

Indeed, this clearly follows from the identities 

(tn, vfn, vn+gin) dv, 

(21) Un+l (f, vfi, fi + gi) dv, 

F?(Un) = ?Jv? (fin, vfln v2 , + gi dv, 

which follow from (10) and the consistency relations (1 1). Now, we have fi > 
0, gi > 0, under the condition olvl < 1 for all v such that Jin(v) $& 0, and 
this is exactly the CFL condition of Theorem 1. This proves (i). 

Second step: The maximum principle. We notice that h = (fy+l gy-3) 1/(y- 1) 

is a convex function of f, g. Since fJ and gi are also convex combinations of 
fn) f4n1I, fin /1 and gn,l, g, gin (whenever a satisfies the CFL condition), 
we thus have 

(22) hi < hi(l - Uv+ - Uv) + h oav + hn Uav+. 
Now ,with the choice (12) of x, 4 , the function h is just given by 

(23) hi= -(Sn)21 {Iv-un 12<flTl}, 

and thus we obtain 

(24) hi < E := z max(SIn, S7n I, Sn 1U)2. 
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At this level we need the following lemma, which is similar to those of [6] and 
whose proof uses simple calculus of variation and is thus skipped. 

Lemma 2. Let e = p/(y - 1) be such that 

e = min {j[ 2f(v)+g(v)] dv;f(v)>O,g(v)>O, 

j(1, v)f(v)dv = (p, 0) (p > 0), fy+lgy-3 < ?y-1 

Then p/Tl/(Y-l) - X/5, and the minimum is uniquely achieved by f = 
p X(v U), g = pV/I(PT- U) LI 

Returning to the proof of Theorem 1, we apply the lemma with f = 
f(v - un+1), g = g,(v - un+,), so that the constraints in the minimization 
problem are realized with p = pn+1 and X given in (24). We thus have 

(Y T)j($2 fg)=P,+1 Tn+1 > e(y-1)= pn+1 fn+ 

which exactly means Sn+1 > X/5 and (iii) is proved. 
Third step: Entropy inequality. As in the second step, let us introduce, for a 

fixed positive number q and for p > 1, the function 

k = [(fY+1 gy-3)1/(y-1)]P 

Since it is a convex function of f and g, we also have 

ki(v) < < (v)(I - -v+ -v) + kln+(v)uv ? ki (v)ouv+. 
We need now the following lemma. 

Lemma 3. The minimization problem 

min { f(fY+1gy-3)pl(y-1)dv; f > O, g > 0, 

j(1, v)f dv = (p, 0), j f+g= pT/(yO - 1)} 

admits a unique minimum 

Fp ( 13p) Gp = T6pFp 1- I 3 T) ' 

where ap, /3p, and 5p are such that the constraints in (25) are satisfied. o 

Again we skip the proof of this lemma which consists in writing the Euler- 
Lagrange equations associated with (25). As before, we use this lemma with 
p =p~n+1 , T = Tn+ 1 f f= - un+ 1u), g = gi(v - u7n+ 1), and the corresponding 
minimizers Fp, Gp thus satisfy 

Fp [ (F<Y+1 Gv)1 d/(Y1)1P ? jk( v 
(26) ? j 

< [kln (v)(I -av+ -av-) + kV I (v)avv + ki I (v)av+] dv. 
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Now we let p go to ?oo and we find exactly the entropy inequality (1 5), since 
the right-hand side of (26) goes to pn71H(Uin+l) and 

k/2(v) (I - av+ - uv-) dv ---+ (p( - aFp, (U/n) ? uF7(Ujn))f(U), 

I I 1(v)v? dv -?F? (?U/J)FI(UJn). 

This concludes the proof of Theorem 1. El 

We end this section with some remarks on the entropy. First, notice that the 
choice 

K w 2 ( 1+2pA)12p K w 2a 

X = 1- ,S + ) 
- 

= $ I - A y 

in the scheme (7)-(10) leads to an entropy inequality (for a regular entropy 
now) of the form (15) with 

HI(U) = typp(p/T1(1- 1))2p, G+ = j VF (Fy+1 Gy-3)p(y- 1) dv, 
v>0 

with Fp, Gp defined in Lemma 3 and some appropriate constant lip. The 
proof of this, as well as the proof of (ii) in Theorem 1, follows in fact that of 
[6], but here we have a more general approach dealing with two functions f, g 
rather than two kinetic variables v, I as in Deshpande [1]. Also we would like 
to emphasize that an exact entropy inequality is necessary to get a maximum 
principle on the specific entropy, and it is an open question if the proofs of 
Osher [5] or Tadmor [11] could be extended to get, for Roe or Osher schemes, 
a maximum principle, or for kinetic schemes the entropy inequality. 

2. THE 2D CASE 

We show here that our results can be naturally extended to the 2D equations 
discretized on an unstructured mesh. Our motivations and notations follow 
those introduced in Perthame and Qiu [8]. 

Consider a grid as shown in Figure 1, where cells Ci have L(i) edges 
E1, ... , EL (L = 3 for triangles, 4 for rectangles, and depends on i for dual 
type grids). We call v1 the unit outward normal to El, IEIu the length of 
El, ICIl the area of Ci, and j(l) the index of the cell Cj(l) neighboring Ci 
along El (j(l) also depends on i, but we omit this dependence for simplicity). 

We now set Un= (p, pu, PU2, E)n and we consider numerical schemes 
for the equations (1) of the form 

L(i) 

U/n+l I CJ = Ui ICu I-At ZIEuIF, V, 
1-1 

FIZvJ = F+(Uin, vl) + F- (Ujnl), v1), 

(27) (, T)Gp ( ) d 

l ~~~~~~~~+ (0, O, T)t 
v ( dvIT. 
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F: iV t /t'' ,, 
~~~~~~~Xj(') 

. X st--------' 

FIGURE 1. An example of unstructured mesh 

The consistency relations are now that the nonnegative even functions X, 'p 

satisfy 

(28) ~ ~ ~ ~ ~ ~ ~ ~~ 
- 

the general value of AL is (2 + N - Ny)/2(y - 1) in N dimensions, 1 < y 

(N?+ 2)/N. We now choose 

(29) (w)=a(I1- 1W 1)2 tP(w)= (i 1w2)+ 

where again a, f8, and 5 are the only constants which yield (28). We obtain 
the following theorem. 

Theorem 4. The scheme (27)-(29) satisfies 
(i) pnl+1 > 0, Tn+1 > 0 whnvrn7?0 T~! 0, 
(ii) the singular family of conservative entropy inequalities 

(iii) the maximum principle on the specific entropy 

S1 Sjn'l i ~' I 

under the CFL condition AtZ ElE IHuI70 + 1317Tjn) ? ICJ for all i. El 

In (30), rl is defined as before by formula (14) and 

Notice that the notation ? here differs from that of the 1 D case, because of 
the introduction of the normals, and because we have no natural orientation for 
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an unstructured grid. Again, the right-hand side of (30) is composed of L + 1 
nonnegative terms, and we use the convention that it is +oo whenever one of 
those L + I1 terms is +oo. 

We skip the proof of Theorem 4, which is a straightforward extension of that 
in ? 1. The only new point is to introduce, following [8], the kinetic scheme 

t (V ) l CtI= fi (V)( l C l -tv*v/+ l )I + v1*v) _ lE/ lfn() (v ) 

(with similar formulae acting on g ), together with the conditions 

(33) fn=pn~(V Un) ~ 2 DV Un) 
( )I n 

Then the exponents in (29) are uniquely recovered by the requirement that, 
(fgY-2)l/(Y-l) being homogeneous to S1{.. }, the minimum in Lemma 2, with 
the constraint fgy-2 < ,y-l, be achieved for our choice of X, qp in (29). 

3. MINIMAL LIMITATIONS FOR SECOND-ORDER SCHEMES 

We return to the 1D case and consider second-order schemes in space and 
time obtained using slope reconstruction (see [12]) together with a Runge-Kutta 
scheme in time. Our purpose is to show that only few oscillations appear (see 
Figure 2) with the above kinetic scheme, using centered slopes on p, u, T and 
limited so as to preserve the nonnegativity of p and T as in [7]. Moreover, an 
additional limitation ensuring the maximum principle on the specific entropy 
up to second order is enough to damp all oscillations (see Figure 3 on p. 128). 
This amounts to a single limitation of min-mod type, combining Dp, DT for 
three quantities. The results are more accurate than with a min-mod limitation 
on the three quantities, as is shown in Figure 4 (p. 128). 

3.1. The second-order scheme. Denote by Un/ ? the inner approximations in 
the mesh i of Un(X+11/2 ? Ax/2). The construction of AU is discussed later. 

Then, the second-order, in space and time, scheme we use is 

Ui -Uin T+ a(F+(Uin/+) + F-(Ui7'-) - F+(Uin+) - F-(Uin)) 0, 

(34) < zU (F+(UJi+) + F-(i-+,) - F+(Usi+ l--U-) (34 ' - U, +a oj~U~ >T~)-F( 1) F- F>U7)) = 0, 

U1n+ = (Un + U1)/2. 

This particular Runge-Kutta scheme will preserve nonnegativity, while we would 
be unable to prove it with other schemes. The reason is that U and U will 
have nonnegative density and temperature, and then a convex combination of 
them, as Un+1 , will also, since p and pT are concave functions of U. 

3.2. Nonnegativity of p, T and limitations. We now prove that the scheme 
(34), with light limitations on a centered prediction of the derivatives, preserves 
nonnegativity. We use the variables p, u, and E; = pY/p = SY-1, and set 

(Api = sgn(p,+1 - pi-l)min(lpi+l - pi-, 1/4, pi), 

(35) Au, = sgn(ui+l - ui- )min((ui+1 - ui_11/4, VTi/(Y - 1)), 

l Al1 = sgn(i+ I - -l)mirnn(ji+ 1 - Y-- l 1 /4, Ei/4). 
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DENSITY I VELOCITY 
I 0 ._ 1. 0 r~d 

0. 7 0.6G 

0. 4 0. 3 

0 1 ._ _ _ _ _ _ _ _ _ -0.1 I _ _ _ _ _ _ _ _ _ _ _ 

0. 0 0. 3 0. 7 I. 0 0. 0 O. 03 0. 7 1. 0 

PRESSURE ENERGY 

0. 7 2. 6 

0. 4 2. 2 

0. 0 0. 3 0. 7 1. 0 0. 0 0.3 0.7 1.0 

ENTROPY 

1 0. 

0. 7 

0 5 , , W , f . . . , g r 
0 0 0 3 0. 7 1.0 

FIGURE 2. Sod shock tube, 200 points, second-order scheme 
with centered, nonlimited slopes 

Then, following the idea introduced in [7], we set (dropping the exponent n) 

(36) Pi = pi ?Api, u = u? Aui, Y? -i ? Ai, 
where ui and Xi are computed for conservation of momentum and energy by 

+ +2 +Y 
- 

- 2 - y 

p+u+p u7= 2piui, Pil + P + ? + - 2Ej. 
2 Xt( - 1) 2 

_ 
1 

This is readily achieved for the second-order modifications of ui, 1i given by 

(37) ui = ui -Aui, t = Ap1/pi, 

and with Ei being the largest root of the polynomial 

(37') - - (A + B)E + (B -A)AEi - CA.1 = 0, 
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DENSITY VELOCITY 

0. 7 0.6 

0. 40. 

0.1 ... ,,,, -0.1 ._______.______.__ 
0.0 0.3 0.7 1.0O 0.0 3 0.7 1.0 

PRESSURE ENERGY 
1 0 2 9 

0. 2 2. 5 

0. 4 2. 1 

0.1i. 

0.0 0.3 0.7 1.0 0.0 0.3 0.7 1. 0 

ENTROPY 
1. 0 

0.8 aI 
0. 7 

0.5 0.00.3 0. 7 
[1 ___ 

FIGURE 3. Sod shock tube, 200 points, second-order scheme 
with the only limitation on the entropy (6) 

average order of the scheme 

energy density velocity 
type of reconstruction 

min-mod .77 .87 .96 
centered .79 .87 .99 

centered + limitation on entropy .87 .91 1.00 

FIGURE 4. L1 error obtained for energy, density, and velocity 
computed with three types of construction of the slopes 
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where 

A - (pi- ApI), B - (pi + Ap) C = 2p, T, + I 
(-2 _ 1)(AUI)2/(y - 1). 

It is indeed easy to check that (37') has a nonnegative discriminant, whatever 
Ai\ is. Also, pi > 0, and thus we obtain 

Theorem 5. The scheme (34)-(37') preserves the positivity of p and T, under 

the CFL condition (1un'?1 + /3Tin,) < 1/2. 

Proof. First of all, we show that U has nonnegative density and temperature. 
We use the following kinetic scheme: 

(38) fi-(finl + fi )/2 + [vJfi', -vJfi7+' -vJfij +v-fin,] = O, 

with the same equation for g, and 

fl? pi (( A ) ignJ pfl?<() 

We claim that (38) yields, using the same combination as in ?1, the scheme 
(34). Indeed, we just have to check that the second term of (38) gives U2 ; this 
is true since 

|[(I, V, V2 12)(f.n, + + fin,- + (O,5 O, 1)(gn, + + gn, -)] dv 

Ui ' + + Ui ' =2Ui 

thanks to (36). Now to check the nonnegativity of f, we need 1/2 > jvI , 
which gives the CFL number of one half. O 

At this level, the limitations involved in (35) are very light, but give few 
oscillations (Figure 2). Let us go one step further and consider the maximum 
principle on the entropy. 

3.3. Limitation by maximum of entropy. We still denote E = pY/p and we 
now require to have the maximum principle on S or X. Therefore, we impose 
the following additional limitation in (35), (37'): 

(39) JAil < max(Xi, Xij1, EX-1) - Ei. 

This implies a maximum principle on i? 1/2 up to a second-order term, because 
Xi?l/2 is given through Yi and not Xi in (36). It seems impossible to perform 
second-order reconstruction satisfying the conservativity requirements (36) and 
the maximum principle on l or S. 

In Figure 3, we show the numerical results obtained coupling the scheme 
(34)-(37) to the additional limitation (39); the oscillations around the contact 
discontinuity are damped completely and only an overshoot remains before and 
after the shock waves. This is also true for other tests problems: Lax shock tube, 
blast waves problem. 

In order to test other types of problems, we have run our method on the slow 
shock proposed in [13]. Again, an overshoot appears, which is immediately 
damped while an oscillation usually propagates with first-order solvers [ 13]. We 
have also tested the shock tube proposed by Einfeldt, Munz, Roe, and Sjogreen 



130 BRAHIM KHOBALATTE AND BENOIT PERTHAME 

ENERRGY MOENTU 

4. 3 0.7 

2. 1 -0. 7 

0.0 . . -2 1 

0.0 0.3 0.7 1.0 0.0 0.3 0.7 1.0 

DENSITY ~~~~~~~~~~~1MACHNUMkER__ 
1. 0 . . 

0.7 . _7 

0.4 -1.7 

0.0 -5.0 _ 
0.0 0.3 0.7 1.0 0.0 0.3 0.7 1.0 

PRESSURE ~~~~~~~~~~~~~~VELO~CITY 
0. 4 2. 0 

0. 3 -0. 7- 

0. 1 - ~~~~~~~~~~~~~~~~~-0. 7- 

0.0.. -2. 0 
00 0. 3 0. 7 1.0o 0.0 0.3 0.7 LO 

FIGURE 5. 200 points, second-order scheme with the only limi- 
tation on the entropy (6); problem (1-2-0-3) at time t - 0.1 
of [14] 

[14], where a zero temperature point arises. As asserted by the mathematical 
study, the scheme is stable, and we obtain indeed second-order results (compare 
Figure 5 and [14]). 

Remark. The choice of p and u as primitive variables for the reconstruction 
is somewhat arbitrary here. Only X plays a particular role. Let us only point 
out that they lead to particularly simple computations, and they are natural in 
the kinetic schemes. 
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